Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 474-481, 2023.
Article in Chinese | WPRIM | ID: wpr-981565

ABSTRACT

In the diagnosis of cardiovascular diseases, the analysis of electrocardiogram (ECG) signals has always played a crucial role. At present, how to effectively identify abnormal heart beats by algorithms is still a difficult task in the field of ECG signal analysis. Based on this, a classification model that automatically identifies abnormal heartbeats based on deep residual network (ResNet) and self-attention mechanism was proposed. Firstly, this paper designed an 18-layer convolutional neural network (CNN) based on the residual structure, which helped model fully extract the local features. Then, the bi-directional gated recurrent unit (BiGRU) was used to explore the temporal correlation for further obtaining the temporal features. Finally, the self-attention mechanism was built to weight important information and enhance model's ability to extract important features, which helped model achieve higher classification accuracy. In addition, in order to mitigate the interference on classification performance due to data imbalance, the study utilized multiple approaches for data augmentation. The experimental data in this study came from the arrhythmia database constructed by MIT and Beth Israel Hospital (MIT-BIH), and the final results showed that the proposed model achieved an overall accuracy of 98.33% on the original dataset and 99.12% on the optimized dataset, which demonstrated that the proposed model can achieve good performance in ECG signal classification, and possessed potential value for application to portable ECG detection devices.


Subject(s)
Humans , Electrocardiography , Algorithms , Cardiovascular Diseases , Databases, Factual , Neural Networks, Computer
2.
Journal of Biomedical Engineering ; (6): 286-294, 2023.
Article in Chinese | WPRIM | ID: wpr-981541

ABSTRACT

The existing automatic sleep staging algorithms have the problems of too many model parameters and long training time, which in turn results in poor sleep staging efficiency. Using a single channel electroencephalogram (EEG) signal, this paper proposed an automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning (TL-SDResNet). Firstly, a total of 30 single-channel (Fpz-Cz) EEG signals from 16 individuals were selected, and after preserving the effective sleep segments, the raw EEG signals were pre-processed using Butterworth filter and continuous wavelet transform to obtain two-dimensional images containing its time-frequency joint features as the input data for the staging model. Then, a ResNet50 pre-trained model trained on a publicly available dataset, the sleep database extension stored in European data format (Sleep-EDFx) was constructed, using a stochastic depth strategy and modifying the output layer to optimize the model structure. Finally, transfer learning was applied to the human sleep process throughout the night. The algorithm in this paper achieved a model staging accuracy of 87.95% after conducting several experiments. Experiments show that TL-SDResNet50 can accomplish fast training of a small amount of EEG data, and the overall effect is better than other staging algorithms and classical algorithms in recent years, which has certain practical value.


Subject(s)
Humans , Sleep Stages , Algorithms , Sleep , Wavelet Analysis , Electroencephalography/methods , Machine Learning
3.
Journal of Biomedical Engineering ; (6): 441-451, 2022.
Article in Chinese | WPRIM | ID: wpr-939611

ABSTRACT

Accurate segmentation of ground glass nodule (GGN) is important in clinical. But it is a tough work to segment the GGN, as the GGN in the computed tomography images show blur boundary, irregular shape, and uneven intensity. This paper aims to segment GGN by proposing a fully convolutional residual network, i.e., residual network based on atrous spatial pyramid pooling structure and attention mechanism (ResAANet). The network uses atrous spatial pyramid pooling (ASPP) structure to expand the feature map receptive field and extract more sufficient features, and utilizes attention mechanism, residual connection, long skip connection to fully retain sensitive features, which is extracted by the convolutional layer. First, we employ 565 GGN provided by Shanghai Chest Hospital to train and validate ResAANet, so as to obtain a stable model. Then, two groups of data selected from clinical examinations (84 GGN) and lung image database consortium (LIDC) dataset (145 GGN) were employed to validate and evaluate the performance of the proposed method. Finally, we apply the best threshold method to remove false positive regions and obtain optimized results. The average dice similarity coefficient (DSC) of the proposed algorithm on the clinical dataset and LIDC dataset reached 83.46%, 83.26% respectively, the average Jaccard index (IoU) reached 72.39%, 71.56% respectively, and the speed of segmentation reached 0.1 seconds per image. Comparing with other reported methods, our new method could segment GGN accurately, quickly and robustly. It could provide doctors with important information such as nodule size or density, which assist doctors in subsequent diagnosis and treatment.


Subject(s)
Humans , Algorithms , China , Disease Progression , Multiple Pulmonary Nodules , Neural Networks, Computer , Tomography, X-Ray Computed/methods
4.
Journal of Biomedical Engineering ; (6): 692-698, 2020.
Article in Chinese | WPRIM | ID: wpr-828117

ABSTRACT

Recently, deep neural networks (DNNs) have been widely used in the field of electrocardiogram (ECG) signal classification, but the previous models have limited ability to extract features from raw ECG data. In this paper, a deep residual network model based on pyramidal convolutional layers (PC-DRN) was proposed to implement ECG signal classification. The pyramidal convolutional (PC) layer could simultaneously extract multi-scale features from the original ECG data. And then, a deep residual network was designed to train the classification model for arrhythmia detection. The public dataset provided by the physionet computing in cardiology challenge 2017(CinC2017) was used to validate the classification experiment of 4 types of ECG data. In this paper, the harmonic mean of classification accuracy and recall was selected as the evaluation indexes. The experimental results showed that the average sequence level ( ) of PC-DRN was improved from 0.857 to 0.920, and the average set level ( ) was improved from 0.876 to 0.925. Therefore, the PC-DRN model proposed in this paper provided a promising way for the feature extraction and classification of ECG signals, and provided an effective tool for arrhythmia classification.


Subject(s)
Humans , Arrhythmias, Cardiac , Disease Progression , Electrocardiography , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL